Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684217

RESUMO

Species of Paramyrothecium that are reported as plant pathogens and cause leaf spot or leaf blight have been reported on many commercial crops worldwide. In 2019, during a survey of fungi causing leaf spots on plants in Chiang Mai and Mae Hong Son provinces, northern Thailand, 16 isolates from 14 host species across nine plant families were collected. A new species Paramyrothecium vignicola sp. nov. was identified based on morphology and concatenated (ITS, cmdA, rpb2, and tub2) phylogeny. Further, P. breviseta and P. foliicola represented novel geographic records to Thailand, while P. eichhorniae represented a novel host record (Psophocarpus sp., Centrosema sp., Aristolochia sp.). These species were confirmed to be the causal agents of the leaf spot disease through pathogenicity assay. Furthermore, cross pathogenicity tests on Coffea arabica L., Commelina benghalensis L., Glycine max (L.) Merr., and Dieffenbachia seguine (Jacq.) Schott revealed multiple host ranges for these pathogens. Further research is required into the host-pathogen relationship of Paramyrothecium species that cause leaf spot and their management. Biotic and abiotic stresses caused by climate change may affect plant health and disease susceptibility. Hence, proper identification and monitoring of fungal communities in the environment are important to understand emerging diseases and for implementation of disease management strategies.

3.
Plants (Basel) ; 10(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34371625

RESUMO

Coffee pulp is one of the most underutilised by-products from coffee processing. For coffee growers, disposing of this agro-industrial biomass has become one of the most difficult challenges. This study utilised this potential biomass as raw material for polyphenolic antifungal agents. First, the proportion of biomass was obtained from the Arabica green bean processing. The yield of by-products was recorded, and the high-potency biomass was serially extracted with organic solvents for the polyphenol fraction. Quantification of the polyphenols was performed by High Performance Liquid Chromatography (HPLC), then further confirmed by mass spectrometry modes of the liquid chromatography-quadrupole time-of-flight (QTOF). Then, the fraction was used to test antifungal activities against Alternaria brassicicola, Pestalotiopsis sp. and Paramyrothecium breviseta. The results illustrated that caffeic acid and epigallocatechin gallate represented in the polyphenol fraction actively inhibited these fungi with an inhibitory concentration (IC50) of 0.09, 0.31 and 0.14, respectively. This study is also the first report on the alternative use of natural biocontrol agent of P. breviseta, the pathogen causing leaf spot in the Arabica coffee.

4.
Plants (Basel) ; 10(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34371637

RESUMO

Camellia sinensis is one of the major crops grown in Taiwan and has been widely cultivated around the island. Tea leaves are prone to various fungal infections, and leaf spot is considered one of the major diseases in Taiwan tea fields. As part of a survey on fungal species causing leaf spots on tea leaves in Taiwan, 19 fungal strains morphologically similar to the genus Diaporthe were collected. ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α), tub2 (beta-tubulin), and cal (calmodulin) gene regions were used to construct phylogenetic trees and determine the evolutionary relationships among the collected strains. In total, six Diaporthe species, including one new species, Diaporthe hsinchuensis, were identified as linked with leaf spot of C. sinensis in Taiwan based on both phenotypic characters and phylogeny. These species were further characterized in terms of their pathogenicity, temperature, and pH requirements under laboratory conditions. Diaporthe tulliensis, D. passiflorae, and D. perseae were isolated from C. sinensis for the first time. Furthermore, pathogenicity tests revealed that, with wound inoculation, only D. hongkongensis was pathogenic on tea leaves. This investigation delivers the first assessment of Diaporthe taxa related to leaf spots on tea in Taiwan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...